Pollen II

Diagrams, Records and such
Pollen Percentage Diagram

<table>
<thead>
<tr>
<th>Raw Numbers</th>
<th>Pinus</th>
<th>Quercus</th>
<th>Ulmus</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>33.33333</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>33.33333</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

![Pollen Percentage Diagram](image-url)
A case study in Quaternary Paleoecological Analysis

Fort Bragg, NC
Peatland Atlantic White Cedar Site (PAW)
Forcing Mechanism?

Inferred mean July position of the jet stream, the Bermuda High, and the thermal low at 6 and 3kyrs

From Liu and Fearn, 2000
Tropical Palynology
Fig. 1. Location of modern pollen sampling sites in Costa Rica. Symbol locations have been adjusted to show multiple samples within the same areas.

(Rodgers and Horn, 1996)
Fig. 2. Percentage pollen diagram for modern pollen spectra. Horizontal lines separate vegetation types (see column to left). A = mangrove, B = tropical dry forest, C = derived savanna, D = tropical moist forest, E = tropical wet forest, F = lowland freshwater swamp, G = premontane rain forest, H = montane rain forest, I = montane bog, J = páramo. Cecropia was excluded from the pollen sums used to determine percentages for all taxa in the Cantarrana (Site 16) sample other than itself.

(Rodgers and Horn, 1996)
Fig. 3. Graph of DCA results for modern pollen data from all sites other than 1 and 16. See text for explanation.
Laguna Pompal: Case study in Tropical Palynology
Figure 3 Diagram showing sediment organic composition, total pollen influx, and charcoal influx for Laguna Pompal.

Goman and Byrne, 1998
Figure 5 Pollen diagram for Laguna Pompal depicting disturbance indicators.
Zea mays pollen from Pompal

Olmec carved head
National Museum of Anthropology, Mexico City