Plinian Eruptions III: The Umbrella Region, Column Collapse, and Pyroclastic Flows

EAS 458 Volcanology

- Plinian eruptions occur in gas-rich viscous magma systems.
- Plinian eruptions can be viewed as occurring in a series of steps:
 - Gas exsolution and bubble formation, which we discussed last time.
 - Fragmentation of the magma.
 - Gas thrust: gas & magma accelerated out of vent.
 - Convection; gas/ash/air mixture rises buoyantly.
 - Umbrella region; mixture rises only because of momentum and spreads.
- Plinian eruptions may fail to produce stable convective columns, or convective columns may collapse, producing pyroclastic flows.
The Umbrella Region

- At some point, convective column reaches neutral buoyancy
 - In other words, density of gas-ash mix equals density of surrounding atmosphere; higher temperature of plume balances extra density of solids.
 - When this occurs the column ceases to rise convectively and spreads.
 - Some rise continues, however, due solely to remaining momentum.

Height of the Umbrella Region

- Sparks, R. S. J., (Bull. Volcanol., 48, 3-15, 1986.) concluded the umbrella height could be calculated as:

\[H_T = 1.32(h_0 + H_B) \]

- Where \(h_0 \) is depth of the virtual source
 - \(h_0 = 8r \)
 - e.g., for \(r = 60 \) m, \(h_0 = 480 \) m
 - For most cases, \(h_0 < H_B \), so the umbrella region will be about 1/3 the height of convective region.
Velocities in the Column

- Velocities in the column are primarily a function of initial velocity.
- Vertical velocities remain substantial in the umbrella region.
- Horizontal velocities in the umbrella region are in the range of 10-100 m/s - driven by mass conservation.

Column Collapse & Pyroclastic Flows

Mayon, Philippines, 1984
Pyroclastic Flows

- “Pyroclastic Flow” - as the roots “pyro” and “clast” suggest, refers to the flow of hot material.

- This term is extremely broad and is applied to a wide range of phenomena that have a variety of causes, but all are ultimately due to volcanic eruptions.

- Related (generally more specific) terms:
 - Ignimbrite
 - Pumice flow
 - Block and ash flow
 - Nuee Ardente (glowing cloud)

- One cause of pyroclastic flows is eruptive column collapse

+40 seconds

+60 seconds

Deposit of the August 7, 1980 Pyroclastic Flow
Deposit of the October 22, 1980 Pyroclastic Flow

Pinatubo Ignimbrite
Eruptive Column Stability

- What conditions lead to convection, and what conditions to collapse?
- Condition necessary for convection:
 - $\rho_{\text{column}} < \rho_{\text{atmosphere}}$
 - Since ash is more dense than the atmosphere, the above requires that the gas in the column be less dense than surrounding atmosphere
- Requires:
 - Low gas density
 - Heat
 - Low ash density

Gas Densities & Stability

- Ash Density
 - $\sim 2.3 \text{ g/cc}$
 - 2300 g/l
- Gas Densities
 - 1 mole occupies 22.4 l at STP
 - Mean molecular weight of air: $\sim 28.8; 1.29 \text{ g/l}$
 - Molecular weight of CO$_2$: 44; 1.96 g/l
 - Molecular weight of water: 18; 0.8 g/l
- In general, a pure CO$_2$ plume will be too dense to ever become convective.
- Convective stability becomes more difficult as CO$_2$/H$_2$O ratio increases.
- Large clasts will tend to fall out early, diluting the ash.
Air entrainment

- Achieving convective conditions requires that air be entrained to dilute the ash.
 - At the vent, even a cloud produced by magma with 10% H₂O will be 5 times more dense than the atmosphere.
 - In the gas thrust region, a volume of column can entrain up to 4 times its volume in air.
- Entrainment is enhanced by turbulence (indeed, requires turbulence).
 - Turbulence is promoted by high velocity
- Therefore, higher velocities lead to greater entrainment.
- Entrainment occurs only at the sides
 - Therefore, the wide columns (wide vents) entrain proportionally less air than narrow columns (narrow vents)

Effect of Vent Radius

- Entrainment occurs at the interface between column and surrounding air
 - This is proportional to the circumference of the column (and ultimately the vent), so it increases linearly with radius
- Mass flux (specifically of particles) is proportional to the area of the vent
 - Mass flux increases with square of vent radius (for a fixed velocity)
- Therefore, at large r, increasing r works against convective stability
Heat

- Entrained air must be heated and expanded to overcome density of ash.
- Because the heat capacity of gas is low, heat comes primarily from ash
 - Both from cooling and solidifying
- Heating efficiency is proportional to mass flux.
- Heating efficiency is also related to grain size: small grains give up heat more rapidly than large ones.

Key Factors Controlling Stability

- Gas content
- Ejection velocity
 - Depends on gas content
- Mass Flux
 - Depends on velocity, but also vent radius
 - (recall that velocity deep in system depends on square of radius because of viscous effects)
 \[u = \frac{g(\rho_0 - \rho_f)r^2}{8\eta} \]
 - Mass flux therefore depends on 4th power of radius
- Vent Radius
 - Positive effect on mass flux, negative on entrainment
Two Scenarios for Collapse

- **Scenario 1:**
 - Vent widens by erosion to the point where column becomes unstable (can’t entrain enough air)

- **Scenario 2:**
 - Water content of magma drops, decreasing eruption velocity at constant radius

Case History of Eruptive Column Collapse: Vesuvius, 79 AD

- **Sources:**
 - Pliny the Younger’s Letter to the historian Tacitus
 - Geological field work & archeological excavation
Vesuvius had been dormant for centuries
- not recognized as a volcano by the Romans (although Etna was)
- Strabo has noticed similarities of rocks to Etna
- Large, damaging earthquake in 62 AD
 - Occasional subsequent shocks over next 16 years.

POMPEI
24 agosto 79 d.C.
Pliny's Account

- Pliny, in Misenum, observes large cloud over Vesuvius on the afternoon of August 24.
- Pliny the Elder, an admiral, organizes rescue effort; can land no nearer than Stabiae.
- Ash and fumes at Stabiae that night, Pliny the Elder dies (heart attack?) trying to escape.

- Morning of August 25, ash blocks out Sun in Misenum (as dark as a sealed room); continual tremors.
- Pliny the Younger and his mother flee northward, but are overcome by clouds of ash.
- Hours later, the ash clears. Paroxysmal phase lasts 20 hours.
- Pliny observes that smooth cone of Vesuvius replaced by stump and the entire region is covered in gray.
The Geologic Record

Geologic Record: Lower Units

- **EU 1: basal unit**
 - Surge deposit produced by phreatomagmatic explosion (due to presence of crater lake?)

- **EU 2 White Pumice**
 - Thick sequence of well-bedded pumice corresponding to Plinian phase of the eruption.
 - Found mainly to the East (indicating westerly wind)
 - 1.5 m thick at Pompeii
 - Accumulated at 10-15 cm/hour
 - Discharge rates of 8×10^7 kg/s - decreases near end
 - Column height: 26 km
Geologic Record: Lower Units

- EU 3 Grey Pumice
 - Begins with increase in eruption rate to 1.5×10^8 Kg/s
 - Color change corresponds to compositional change
 - Column height of 32 km; decreases to 17 km over next 9 hours
 - EU 2 and EU 3 interrupted by at least 5 pyroclastic flows produced by column collapse

The Geologic Record: Upper Units

- Provide evidence of phreatomagmatic events
 - Pyroclastic flow and surge deposits interbedded with thin fall deposits
 - Rich in lithic fragments, including deep-seated limestone, marbles, skarns
 - Probably result from interaction of magma with regional aquifer
Eruption of Zoned Magma Chamber

- Correlation between mass discharge rate and composition:
 - Higher discharge rates scoured deeper into magma body.

Pyroclastic Flows
The Epilogue

- Pompeii and Herculaneum destroyed by pyroclastic flows; death told unknown (about 20,000 residents at the time).
 - 4 m in Pompeii
 - 23 m in Herculaneum
- Ash cover lead Romans to abandon the area
- Pompeii and Herculaneum eventually forgotten
- Rediscovered in 1595
 - Some plundering of art over the next several centuries
- Excavation begins in 1748
- Vesuvius has subsequently erupted more than 50 times.