Geol. 656 Isotope Geochemistry
Syllabus Spring 2000

Professor: William M. White
4112 Snee
255-7466; white@geology.cornell.edu
Office Hours: TBA

Text: WMW Lecture Note

Grades:
30% Prelim
40% Final
30% Problems Sets (there will be 6 to 8)

Information on the course and lecture notes are posted on the World Wide Web at:
http://www.geo.cornell.edu/geology/classes/geo656/656home.html

Part I: Radioactive and Radiogenic Isotope Geochemistry
A. Physical Fundamentals
 1 Introduction, Physics of the Nucleus Jan 24
 2 Physics of the Nucleus, Radioactive Decay Jan 26
 3 Nucleosynthesis and the Origin of the Elements Jan 28
B. Geochronology
 4 Equations of Radioactive Decay and Radiogenic Growth Jan 31
 5 Geochronology I: The K-Ar System Feb 2
 6 Geochronology II: The Rb-Sr System Feb 4
 7 Geochronology III: Sm-Nd Feb 7
 8 Geochronology IV: U-Th-Pb Feb 9
 9 U-Th-Pb continued Feb 11
 10 Short-lived Isotopes of the U-Th Decay Series Feb 14
 11 Lu-Hf, Re-Os & Other Decay Systems Feb 16
 12 Geochronology VI: Cosmogenic Isotopes (\(^{14}C, ^{36}Cl, ^{10}Be\), etc.) Feb 18
 13 Cosmogenic Isotopes, continued Feb 21
 14 Geochronology VII: Fission Track Dating Feb 23
 15 Analytical Methods Feb 25
C: Radiogenic Isotope Geochemistry
 16 Isotope Geochemistry of the Earth’s Mantle I Feb 28
 17 Sr Isotope Chronostratigraphy & Seawater Geochemistry Mar 1
 18 Isotope Geochemistry of the Earth’s Mantle II Mar 3
 19 Mantle and Whole Earth Geochemical Models Mar 6
 20 Evolution of the Mantle and Crust Mar 8
 21 Evolution of the Continental Crust Mar 10
 22 Evolution of the Continental Crust II Mar 12
 23 Magma Sources in Subduction Zones Mar 15
 PRELIM EXAM Mar 17
 SPRING BREAK Mar 17
 24 Cosmochemistry and Cosmochronology Mar 27
 25 Cosmochemistry and Cosmochronology II Mar 29
 26 Evolution of the Atmosphere Mar 31

Part II: Stable Isotope Geochemistry
A: Fundamentals
 27 Physical Fundamentals I Apr 3
 28 Physical Fundamentals II Apr 5
 29 Geothermometry and Isotopes in the Hydrosphere and Atmosphere Apr 7
 30 Isotope fractionation in the Biosphere Apr 10
B: Igneous and Hydrothermal Systems
 31 Stable Isotopes in Igneous Systems I: Indicators of Assimilation Apr 12
 32 Stable Isotopes in Igneous Systems II: Crustal Recycling Apr 14
 33 Hydrothermal Systems and Ore Genesis Apr 17
 34 Hydrothermal Systems and Ore Genesis II Apr 19
C: Low Temperature Applications
 35 Applications to Archeology and Paleontology Apr 21
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Stable Isotopes and Hydrocarbons</td>
<td>Apr 24</td>
</tr>
<tr>
<td>37</td>
<td>Paleoclimatology</td>
<td>Apr 26</td>
</tr>
<tr>
<td>38</td>
<td>Paleoclimatology II</td>
<td>Apr 28</td>
</tr>
<tr>
<td>39</td>
<td>Evolutionary Models of the Biosphere, Hydrosphere, and Atmosphere</td>
<td>May 1</td>
</tr>
<tr>
<td>40</td>
<td>Evolutionary Models II</td>
<td>May 3</td>
</tr>
<tr>
<td>41</td>
<td>Catch-up and Review</td>
<td>May 5</td>
</tr>
</tbody>
</table>

Final Exam: Friday May 12, 3:00-5:30