Cosmogenic Nuclides II

In-Situ-Produced Cosmogenic Nuclides

A few cosmic rays and secondary particles manage to pass entirely through the atmosphere where they interact with rock at the surface of the Earth. These interactions produce a great variety of stable and unstable nuclei. Because the atmosphere is a very effective cosmic ray shield, these cosmogenic nuclides are rare and difficult to detect, so most of the nuclides of interest are unstable ones that otherwise do not occur in the Earth. Those nuclides that are geologically useful are listed in Table 1 along with their production mechanisms; the most important of these are 36Cl, 26Al, and 10Be. Stable cosmogenic nuclides can also provide useful geological information. To be of use, the cosmogenic production must be large relative compared to the background abundance of such nuclides. Thus only 3He and 21Ne have been studied to date. In the following examples, we will see how the cosmogenic production of a rare stable nuclide, 3He, can be used to estimate erosion rates, and how 36Cl can be used to determine the time material has been exposed to cosmic rays.

Table 13.1. Isotopes with Appreciable Production Rates in Terrestrial Rocks.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life</th>
<th>Thermal neutrons</th>
<th>Capture of $^\mu^-$</th>
<th>Low-energy $^\alpha$ particles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10$^{-15}$)</td>
<td>Target</td>
<td>Reaction</td>
<td>Target</td>
</tr>
<tr>
<td>3He</td>
<td>stable</td>
<td>6Li</td>
<td>(n,α)</td>
<td>11B</td>
</tr>
<tr>
<td>10Be</td>
<td>1.6×10^6</td>
<td>14N, 17O</td>
<td>(n,p), (n,α)</td>
<td>19B, C, N, O</td>
</tr>
<tr>
<td>14C</td>
<td>5730</td>
<td>14N</td>
<td>(n,p)</td>
<td>N, O</td>
</tr>
<tr>
<td>21Ne, 22Ne</td>
<td>stable</td>
<td>—</td>
<td>—</td>
<td>Na, Mg, Al</td>
</tr>
<tr>
<td>26Al</td>
<td>7.1×10^5</td>
<td>—</td>
<td>—</td>
<td>Si, S</td>
</tr>
<tr>
<td>36Cl</td>
<td>3.0×10^5</td>
<td>35Cl, 39K</td>
<td>(n,γ), (n,α)</td>
<td>K, Ca, Sc</td>
</tr>
<tr>
<td>129I</td>
<td>1.6×10^5</td>
<td>128Te</td>
<td>(n,γ)</td>
<td>130Te, Ba</td>
</tr>
</tbody>
</table>

Determining Erosion Rates from Cosmogenic 3He

The penetration of cosmic rays decays exponentially with depth according to:

$$e^{-z\rho/l}$$

where z is depth, l is a constant that depends on the nature and energy of the particle and on the material it penetrates, and ρ is the density. For the nucleonic component of cosmic rays, l is approximately 160 g·cm$^{-2}$. For a material, such as a typical rock, having a density of 2.5 g·cc, the ratio ρ/l, which could be referred to as the characteristic penetration depth, is about 64 cm. So at a depth of 64 cm, the cosmic ray flux would be $1/e$ or 0.36 times the flux at the surface. For the μ (muon) component, l is about 1000g·cm$^{-2}$, and for ν (neutrinos) l is nearly infinite (because neutrinos interact so weakly with matter). Most of the cosmic ray interactions are with the nucleonic component. The meaning of all this is that cosmogenic nuclides will be produced only on the surface (top meter or two) of a solid body. As in the atmosphere, cosmic ray interactions produce both stable and unstable nuclei. If we consider the case of the production of a stable nucleus, the number of stable nuclei produced at the surface of the body over some time t is simply given by:

\[N = N_0 e^{-z\rho/l} \]

93

February 21, 2005

* The μ particle belongs to the family of particles known as leptons, the most familiar members of which are the electron and positron. Like the electron, it may be positively or negatively charged and has a spin of $1/2$. However, its mass is about 100 MeV, more than 2 orders of magnitude greater than that of the electron, and about an order of magnitude less than the proton. It is produced mainly by decay of pions, which are also leptons and are created by high-energy cosmic ray interactions. Muons are unstable, decaying to electrons and positrons and ν_μ (muonic neutrino) with an average lifetime of 2×10^6 sec. Because muons are leptons, they are not affected by the strong force, and hence interact more weakly with matter than the nucleonic component of cosmic rays.
where P is the production rate at the surface, which is in turn a function of the cosmic ray flux, depth, elevation, geomagnetic latitude, and reaction cross section. If we know the production rate, we can solve 13.2 for t, the length of time the surface has been exposed to cosmic rays.

Despite being the second most abundant element in the cosmos, He is very rare on Earth because it is too light to be retained — it escapes from the atmosphere readily. Of helium’s two isotopes, 3He is some six orders of magnitude less abundant than 4He. This is partly because 4He is continually produced by α-decay. Hence the Earth’s supply of 4He is continually replenished, whereas 3He is not. In 1987 M. D. Kurz found extraordinarily high 3He/4He ratios in basalts from Hawaii. The origin proved to be cosmogenic. Most of the 3He is produced by spallation, with a minor component produced by 6Li(n,α) and 7Li(µ,α) reactions.

Figure 13.1 shows the decrease in cosmogenic 3He with depth in a core from Haleakala volcano in Hawaii. From Kurz (1986).

If the depth is not a function of time, this simply integrates to

$$C(z,t) = P \frac{1}{\varepsilon \rho} e^{-z \varepsilon / \rho}$$ \hspace{1cm} 13.6

Substituting $z_0 = z + \varepsilon t$, eq. 13.6 simplifies to:

$$C(z,t) = P \frac{1}{\varepsilon \rho} e^{-z \varepsilon / \rho} (1 - e^{-z \varepsilon / \rho})$$ \hspace{1cm} 13.7

For a sample at the surface, $z = 0$ and this equation reduces to:

This is not strictly true. 3He is produced by 4Li(n,α)3He from spontaneous fission-produced neutrons. However, we might guess that this is a rather improbable reaction. First of all, U is a rare element, and furthermore it rarely fissions. Secondly, Li is a rare element, with typical concentrations of a few 10’s of ppm. The probability of a fissogenic neutron finding a 6Li nucleus before it is captured by some other nucleus will therefore not be high. Not surprisingly then, the 3He production rate can be considered insignificant in most situations.
Neither 13.8 nor 13.7 can be solved directly. However, if the age of the rock, \(t \), is known, one can measure a series of values, \(C \), as function of depth and make a series of guesses of the erosion rate until the a curve based on 13.7 fits the data. Using this procedure, Kurz estimated an erosion rate of 10 m/Ma for Haleakala (Kurz noted that for higher erosion rates, it would be necessary to take account of the muon-produced \(^{3}\)He).

Erosion Rates from Radioactive Cosmogenic Nuclides

For a radioactive nuclide such as \(^{26}\)Al or \(^{36}\)Cl we need to consider its decay as well as its production. The concentration of such nuclide as a function of time and depth is given by:

\[
C(z,t) = P e^{-\lambda t} (1 - e^{-\nu} e^{\nu t})
\]

(13.9)

where \(\lambda \) is the decay constant and \(t \) is age of the rock. If the rock is much older than the half-life of the nuclide (i.e., \(\lambda t >> 1 \); for \(^{36}\)Cl, for example, this would be the case for a rock \(> 3 \) Ma old), then the last term tends to 1. Eventually, production of the nuclide, its decay, and erosion will reach steady-state (assuming cosmic ray flux and erosion rate are time-independent). In this case, the concentration at the surface will be given by:

\[
C_0 = P \frac{1}{\lambda + \nu}
\]

(13.10)

Since this equation does not contain a time term, we cannot deduce anything about time in this situation. However, knowing the penetration depth, \(\lambda \), and the production rate, we can deduce the erosion rate.

\(^{36}\)Cl Dating of Glacial Deposits

Let us next consider the build up of a radioactive nuclide in a rock where the erosion rate can be ignored. For a nuclide being both produced by cosmic ray bombardment and lost by radioactive decay, our basic equation becomes:

\[
\frac{dN}{dt} = P - \lambda N
\]

(13.11)

To obtain the abundance, \(N \), of the radionuclide at some time \(t \), we simply integrate 13.11:

\[
N = \frac{P}{\lambda} (1 - e^{-\lambda t})
\]

(13.12)

For \(t >> \lambda \); i.e., after many half-lives, a steady-state is reached where:

\[
N = \frac{P}{\lambda}
\]

(13.13)

For shorter times, however, we can solve equation 13.12 for \(t \). In this case, \(t \) is the time the rock has been exposed to cosmic rays. Since the penetration of cosmic rays is so limited, this is the time the rock has been exposed at the surface of the Earth. This particular problem is of some interest in dating rock varnishes and glacial moraines. All moraines but those from the most recent glaciation will be too old for \(^{14}\)C dating, but virtually the entire Pleistocene glacial history is an appropriate target for dating with \(^{26}\)Al or \(^{36}\)Cl.
Since 36Cl is a fairly heavy nuclide, only a few specific cosmic-ray induced nuclear reactions yield 36Cl. The principle modes of production are thermal neutron capture by 35Cl (the most abundant of chlorine’s two stable isotopes), spallation reactions on 39K and 40Ca, and muon capture by 40Ca (Phillips et al., 1986). In effect, this means the composition of the sample, in particular the concentrations of Cl, K, and Ca, must be known to estimate the production rate. Phillips et al. (1986) showed that the build-up of 36Cl in rocks can be reasonably predicted from these concentrations by determining 36Cl in a series of well-dated lavas and tuffs. In addition to rock composition, it is also necessary to take into consideration 1.) latitude, 2.) elevation, and 3.) non-cosmogenic production of 36Cl. As we saw in the last lecture, spontaneous fission of U and Th will produce neutrons that will result in some production of 36Cl by neutron caption by 35Cl.

Phillips et al. (1990) determined 36Cl ages for boulders taken from a series of moraines in Bloody Canyon of Mono Basin, California. They were careful to sample only boulders from moraine crests as these were most likely to remain above the snow during winter and less likely to have rolled. Their results are shown graphically in Figures 13.2. The youngest moraines correspond to glacial maxima of the most recent glaciation and yield ages in good agreement with 14C dating. Older moraines show considerably more scatter. In addition to analytical errors, factors that might account for the larger scatter include: 35Cl inherited from earlier exposure, preferential leaching of 35Cl, erosion of the rock surface, gradual exposure as a result of erosion of till matrix, and snow cover. Most of these factors will result in the age being too young, so that maximum ages were preferred for the older moraines. The best estimates of moraine ages are compared with the marine O isotope record, which in this case is used as a proxy for global temperature history, in Figure 13.3. Generally, the moraines correspond in time to high δ^{18}O in the oceans, which corresponds to cold temperatures. This is just what we expect: maximum extent of the glaciers occurred during cold climatic episodes.

REFERENCES AND SUGGESTIONS FOR FURTHER READING

Figure 13.2. 36Cl ages of moraine boulders from Bloody Canyon, eastern Sierra Nevada. (From Phillips et al., 1990)

Figure 13.3. Comparison of best estimated 36Cl ages of moraine boulders from Bloody Canyon with the marine 18O record. There is a reasonably good correspondence with the moraine ages and glacial maxima inferred from 18O (from Phillips et al., 1990).
