GEOCHRONOLOGY I

We have now discussed many of the basic aspects of radiogenic isotope geochemistry and we can now consider how it is applied to solving questions about the Earth. We will begin by discussing geochronology, because this aspect is basic to other aspects of isotope geochemistry. To understand the more chemical and geological aspects of isotope geochemistry, we must first learn to tell time, so to speak. We will consider the various decay systems separately. Except for some special aspects of K-Ar and U-Th-Pb, the principles involved do not differ between these systems. The differences that do exist arise largely from the different chemical behavior of the elements involved.

THE K-AR-CA SYSTEM

Two aspects of this system make it special. First, it is a branched decay: a 40K nucleus (an odd-odd nuclide) may decay to either a 40Ca by β^+ or to a 40Ar atom by electron capture (or much more rarely by positron emission — which is just as well for us). It is impossible to predict how a given 40K atom will decay, just as it is impossible to predict when it will decay. We can predict quite accurately what proportion of a large number of 40K atoms will decay to each, however. The ratio of electron captures to beta decays is called the branching ratio and is defined as:

$$R = \frac{\lambda_e}{\lambda_\beta}$$ \hspace{1cm} (5.1)

where the two lambda’s are the decay constants (i.e., the probability of decay) for each mode. The branching ratio is 0.117, $\lambda_e = 0.581 \times 10^{10}$ yr, $\lambda_\beta = 4.962 \times 10^{10}$ yr. The total decay constant for 40K is:

$$\lambda = \lambda_\beta + \lambda_e = 5.543 \times 10^{10} \text{ yr}^{-1}$$ \hspace{1cm} (5.2)

We need to take account of this branched decay in our equation, because while K decaying to Ca does not produce radiogenic Ar, it is no longer K and not available for 40Ar production. Thus our equation for radiogenic daughter production (equation 4.7) becomes:

$$^{40}\text{Ar} = \frac{\lambda_e}{\lambda}^{40}\text{K}(e^{-\lambda t} - 1)$$ \hspace{1cm} (5.3)

where the asterisk indicates radiogenic 40Ar. Note we can write a similar equation for 40Ca by substituting λ_β for λ_e.

Most, although not all, of the work on the K-Ca-Ar system has focused on Ar because the 40K/40Ca ratio is usually small. 40K is the least abundant of the K isotopes (0.012%), whereas 40Ca is the most abundant 40Ca isotope (96.92%), and Ca is a more abundant element than K (40Ca is even-even, 40K is odd-odd). As a result, variations in the 40Ca/40Ca ratio resulting from radioactive decay are quite small and difficult to measure. Only in very favorable circumstances, such as halide salt deposits, is geochronology practical.

As one might expect, particularly in view of the above discussion, one of the most important criteria for a useful radiometric chronometer is that the variations in the radiogenic isotope be large relative to the precision and accuracy with which they can be measured. In this respect, a short half-life is advantageous, and K has one of the shortest half-lives of the long-lived radioactive isotopes. Because of the volatility of Ar, the Earth either lost much of its Ar during its formation, or never acquired much, giving the Earth a rather high K/Ar ratio. Furthermore, much of the Ar the Earth retained is now in the atmosphere. As a result, 40K/40Ar ratios in the solid Earth tend to be quite high. Because of the high 40K/40Ar ratios and the relatively short half-life of 40K, the K-Ar system is often the one of choice when the task at hand is to date very young events. Meaningful ages (‘meaningful’ means the uncertainty is small relative to the age) of less than 30,000 years have been determined in favorable circumstances. 40K/40Ar it is the only long-lived decay system that has produced age information of use in archeology and human evolution.
Much of what is special about K-Ar derives from Ar being a noble gas and its resulting refusal to be chemically bound in crystal lattices. Ar in rocks and minerals is simply trapped there. It has difficulty escaping because the atoms of the lattice block its escape path, but it does not form chemical bonds with other atoms in the lattice. Thus when a mineral crystallizes from a lava, it will generally, although not always, do so with very little Ar. Pillow basalts formed on the seafloor are one example of exceptions to this rule. The combination of relatively high pressure and rapid transition from the liquid to the solid state can result in trapping of substantial amounts of Ar. Similarly, minerals crystallizing from plutonic rocks may also retain Ar.

In favorable circumstances, essentially no Ar will be trapped in a mineral crystallizing from lava. The great advantage of this, from a geochronological viewpoint, is that we have only one unknown, namely \(t \), and we can use equation 5.3 to solve for it by measuring the \(^{40}\text{K}^{\text{Ar}} \) and \(^{36}\text{Ar} \) in one sample. Actually, one need not assume that no ‘initial’ Ar whatsoever is present. Indeed, in detail, this would seem a poor assumption since a mineral crystallizing in contact with the atmosphere can be expected to absorb a small but finite amount of atmospheric Ar. This atmospheric Ar is readily corrected for since the atmosphere has a uniform ratio \(^{40}\text{Ar}/^{36}\text{Ar} \) of 295.5. By measuring the amount of \(^{36}\text{Ar} \) present, we can deduce the amount of atmospheric \(^{40}\text{Ar} \) initially present. Our age equation (equation 4.17) becomes simply:

\[
\frac{^{40}\text{Ar}}{^{36}\text{Ar}} = 295.5 + \frac{\lambda_c}{\lambda} \frac{^{40}\text{K}}{^{36}\text{Ar}} \left(e^{E_A/RT} - 1 \right)
\]

If we suspect that the composition of ‘initial’ Ar differs significantly from atmospheric, it is then necessary to employ the isochron approach, measuring K and Ar in a number of cogenetic samples and solving simultaneously for \(t \) and the initial \(^{40}\text{Ar}/^{36}\text{Ar} \) ratio.

Diffusion, Cooling Rates, and Closure Temperatures

Because Ar is not chemically bound in lattices, the K-Ar clock will generally be reset more readily than other systems. We concluded earlier that an event that ‘resets’ a radiometric clock is generally a thermal one. In the case of K-Ar, we might guess that the system would be reset whenever temperatures are high enough to allow Ar to diffuse out of the rock or mineral of interest. It is worth considering this on a slightly more quantitative level.

It can be shown both theoretically and experimentally that the rate at which a species will diffuse through a medium is related exponentially to temperature:

\[
D = D_0 e^{-E_A/RT}
\]

where \(D \) is the diffusion coefficient, \(D_0 \) is the 'frequency factor', \(E_A \) is the activation energy, \(R \) is the gas constant and \(T \) is thermodynamic, or absolute, temperature, (i.e., kelvins). The diffusion ‘flux’ is then related to the concentration gradient by:

\[
J = -D \frac{\partial C}{\partial x}
\]

where \(C \) is the concentration and \(x \) is distance. Figure 5.1 shows a plot of experimentally determined values of \(D \) for Ar in biotite plotted against the inverse of temperature. The point to be made here is that relatively small increases in temperature result in large increases in the diffusion coefficient. For example, increasing the temperature from 600°C to 700°C results in a two order of magnitude increase of the diffusion coefficient, and, for a given concentration gradient, of the Ar diffusion flux. Using the values of \(E_A \) and \(D_0 \) given in the figure, we can calculate the diffusion coefficient for temperatures not shown in the graph. The value of \(R \) is 1.987 cal/Kelvin-mole (8.314 joules/Kelvin-mole). For a temperature of 300 K (27°C), \(D \) would be \(4 \times 10^{-16} \) cm\(^2\)/sec. For any reasonable concentration gradient, there would be no significant Ar loss from biotite, even over extremely long times. At 600 K (327°C), we obtain \(D = 6 \times 10^{-19} \) cm\(^2\)/sec, which implies a slow, but significant diffusion rate. At 700°C, how-
ever, loss of Ar would be quite rapid: about 1/3 of the Ar would be lost from biotites of 97 µ radius in 2-3 weeks (you can understand then why the experiments were done at these temperatures and not lower ones).

The following equation (from Crank, 1975) is of use in interpreting diffusion coefficients. The equation gives the fraction of the species lost as a function of time (t), diffusion coefficient, and the diffusion radius (a).

\[f = \frac{4}{\pi^{1/2}} \left(\frac{D_t}{a^2} \right)^{1/2} - \frac{D_t}{a^2} - \frac{1}{3\pi^{1/2}} \left(\frac{D_t}{a^2} \right)^{3/2} \]

The equation assumes radial diffusion in a cylinder of infinite length and radius a. We can use this equation to understand how Ar loss will vary with temperature. We assume a value for a of 150 µ, and use the \(D_0 \) and \(E_A \) values given in Figure 5.1. Figure 5.2 shows the results of this calculation performed for various times (and at various temperatures: D is a function of temperature, of course).

Let’s consider the geological implications of this diagram. Imagine a body of rock, either igneous or metamorphic, cooling from high temperature, a temperature high enough so that all Ar is lost. Let’s pick up the story when the body is still 400°C and cooling at a rate of 100°C/Ma. At this temperature, the biotite would just be beginning to retain radiogenic Ar; that is, it is not being lost quite as fast as it is being created. After the first additional million years, it would have cooled to 300°C, and biotite would be retaining most of its radiogenic Ar (loss rate of about 10 percent per Ma). If cooling continues at this rate for another million years (in the real world, it is unlikely cooling rates would be so constant), biotite would be losing Ar at a rate of only a tenth of a percent per Ma, a fairly insignificant rate. If the body then cooled completely, and if we sampled biotite for K-Ar dating some 100 Ma later, assuming the biotite was not reheated, the ‘age’ we would calculate would refer to that 2 Ma period when the biotite cooled from 400°C to 200°C, and probably closer to the time it passed from 400°C to 300°C. We say the biotite ‘closed’ at that time, and we can estimate the closure temperature at between 300°C and 400°C.

Suppose cooling was slower, say 10°/Ma. In this case, 10 Ma would be required to cool from 400°C to 300°C, and 20 Ma to cool to 200°C. A much smaller fraction of the radiogenic Ar produced while the biotite was in the 200-400°C range would have been retained. The ‘age’ we would calculate using equation 5.4 would be younger than in the example above. It would thus seem that under these circumstances, the ‘closure temperature’ would depend on the cooling rate. This is indeed the case.

Dodson (1973) derived an equation for ‘closure temperature’ (also sometimes called blocking temperature) as a function of diffusion parameters, grain size and shape, and cooling rate:

* Note that this equation implies that diffusional loss will be inversely related to crystal size: larger crystals will lose less.
T_c = \frac{E_A}{R \ln \left(-\frac{A R T_c^2 D_0}{a^2 E_A \tau} \right)}

where \(\tau \) is the cooling rate, \(a \) is the characteristic diffusion dimension (e.g., radius of a spherical grain), and \(A \) is a geometric factor (equal to 55 for a sphere, 27 for a cylinder, and 9 for a sheet). Unfortunately, this is not directly solvable since \(T_c \) occurs both in and out of the log, but it can be solved by indirect methods†.

There are several important notions we can come away with. First, a ‘closure temperature’ is a useful concept, but a mineral will not suddenly stop losing Ar, or any other radiogenic component, at its closure temperature. Closure temperature reflects a trade off between loss and creation of the radiogenic component. Second, there is some ultimate geological limitations on the meaning of an age of a slowly cooled rock, such as a large intrusion or regionally metamorphosed body of rock. We might also expect the age we obtain will depend on the mineral we use for dating (since the diffusion coefficient will vary), and perhaps on its composition (there is in fact some compositional dependence of the Ar diffusion coefficient on the Fe/Mg ratio in biotite; but apparently none in hornblende). Finally, we get the sense that it might be rather easy for K-Ar mineral age to be partially reset. This is certainly the case. We discuss next a technique that can at least identify partially reset minerals, and in favorable cases, provide a reasonable estimate of the original ‘age’.

Ar-39Ar Dating

If you look at the table of isotopes you’ll see 39Ar has a half-life of 269 years and does not occur naturally. You might justifiably wonder how it could be used for dating. The so-called 40-39 method is ac-

† The Solver, an add-in tool that comes with Microsoft Excel™ can be used to solve problems such as this.
tually 40K-40Ar dating but employing a somewhat different analytical technique for the potassium. The key is the production of 39Ar by a nuclear reaction on 39K, the most abundant of potassium’s three isotopes:

39K (n,p) 39Ar

The reaction is produced by irradiating a sample with neutrons in a reactor. It is important to distinguish this reaction from simple neutron capture, but we can nevertheless define a reaction cross-section. The amount of 39Ar produced is then a function of the amount of 39K present, the reaction cross-section, the neutron flux, and the irradiation time. Since the 40K/39K ratio in the Earth is constant (at any given time), the amount of 40K can be calculated from 39Ar.

In practice, the analysis is performed by simultaneuously irradiating and analyzing a standard of known age. The flux, capture cross section, and decay constant terms will be the same for the standard as for the unknown sample. We can combine them into a single term, C, as:

$$C = \frac{\lambda_e}{\lambda} \int \phi_e \sigma_e de$$ \hspace{1cm} 5.11

and equation 5.9 becomes:

$$\frac{^{40}Ar}{^{39}Ar} = C \frac{^{40}K(e^{4\beta} - 1)}{^{39}K}$$ \hspace{1cm} 5.12

The value of C can be determined from analysis of the standard, so that 5.11 can be solved for the age.

Another problem is the production of both 39Ar and 40Ar by other reactions that include 40K(n,p)40Ar, 40Ca(n,α)36Ar, and 40Ca(n,α)39Ar. These must be corrected for. Generally, 37Ar, produced by 40Ca(n,α)37Ar, is used to make these corrections.
In conventional K-Ar dating, Ar is released from samples by fusing in vacuum. However, we might guess from our knowledge of diffusion that a sample will begin to lose Ar before it reaches its melting temperature. If the ratio of radiogenic 40Ar to K (and therefore to 39Ar) were distributed uniformly throughout the sample, a sample of gas taken before the sample fused would produce the same age as for total fusion. We might guess, however, that some parts of the crystal have preferentially lost Ar through diffusion during the initial cooling of the crystal, or perhaps during some subsequent reheating event. Since the diffusion rate is proportional to the concentration gradient, we can anticipate that diffusion will be faster from the rims of crystals where the concentration gradient is higher than in the interior of crystals. So we might expect crystal rims to experience Ar loss at lower temperatures than crystal interiors. The rims would then record younger ages. As we heat the sample, we would also expect rims to start to give up there Ar at the lowest temperatures, partly for this reason, and partly because the Ar has less distance to go to get out. The lower 40Ar/39Ar of the gas in the rim would be seen as a lower age (which may or may not have significance). As we increased the temperature, the more retentive parts of the crystal would release their gas, and we could expect the 40Ar/39Ar and the apparent age to increase. If some parts of the crystals have lost no gas, their 40Ar/39Ar ratios would record the ‘correct’ age, even though the crystal as a whole has suffered some loss. Figure 5.3 is an Ar release diagram for a biotite exhibiting this sort of behavior. Conventional K-Ar dating would have produced an age intermediate between the ‘correct’ age and the apparent young age of those parts of crystal that have suffered loss of radiogenic 40Ar. Thus the combination of the 40Ar/39Ar method with step-heating provides a means of retrieving useful geochronological information from samples whose value would have otherwise been compromised because of diffusional loss. In a certain sense, we are relaxing our requirement that the system must have remained closed: with 40Ar/39Ar dating, we require only that some part of the system have remained closed.

Most Ar release spectra are not so simple as that in Figure 5.3. Figure 5.4 shows Ar release spectra for a series of hornblende samples taken at varying distances from the contact with an intrusive granodiorite. All show significant Ar loss as a result of heating from the intrusion. None retain, even at the highest release temperature, the true age of 367 Ma.

REFERENCES AND SUGGESTIONS FOR FURTHER READING

