RADIOGENIC ISOTOPE GEOCHEMISTRY: THE MANTLE I
INTRODUCTION

The initial use of radioactive and radiogenic isotopes in geology was directed exclusively toward geochronology. The potential geochemical applications became apparent only later. One of the first to recognize the potential of radiogenic isotope studies was Paul Gast, who was a student of Al Nier, whom we have already met. In what was one of the first papers to apply radiogenic isotopes to a geochemical problem (the composition of the mantle), Gast (1960) described the principles of Sr isotope geochemistry as follows:

In a given chemical system the isotopic abundance of 87Sr is determined by four parameters: the isotopic abundance at a given initial time, the Rb/Sr ratio of the system, the decay constant of 87Rb, and the time elapsed since the initial time. The isotopic composition of a particular sample of strontium, whose history may or may not be known, may be the result of time spent in a number of such systems or environments. In any case the isotopic composition is the time-integrated result of the Rb/Sr ratios in all the past environments. Local differences in the Rb/Sr will, in time, result in local differences in the abundance of 87Sr. Mixing of material during processes will tend to homogenize these local variations. Once homogenization occurs, the isotopic composition is not further affected by these processes. Because of this property and because of the time-integrating effect, isotopic compositions lead to useful inferences concerning the Rb/Sr ratio of the crust and of the upper mantle. It should be noted that similar arguments can be made for the radiogenic isotopes of lead, which are related to the U/Pb ratio and time.

Gast’s first sentence is simply a statement of the radiogenic growth equation for the Rb-Sr system:

$$\frac{^{87}Sr}{^{86}Sr} = \left(\frac{^{87}Sr}{^{86}Sr} \right)_0 + \frac{^{87}Rb}{^{86}Sr} \left(e^{2t} - 1 \right)$$

Gast’s statement remains a valid and succinct summary of the principles of isotope geochemistry. The only change we need to make is to modify the last sentence to add mention of the radiogenic isotopes of Nd, Hf, and Os.

A principal objective of geology is to understand how the Earth evolved from its initial state to its present one. Radiogenic isotope geochemistry is uniquely suited for this sort of study because an isotope ratio such as 87Sr/86Sr is a function not only of the differentiation processes which fractionate Rb from Sr, it is also a function of the time at which the fractionation occurred. On a continuing evolving Earth, ancient features tend to be destroyed by subsequent processes. For example, erosion of rock to form a new sedimentary rock destroys information about the large-scale structure of the pre-existing rock. If the sediment is sufficiently coarse-grained, some information about the fine-scale structure of parent rock will be preserved. If the sediment produced is fine-grained, such as shale, no structural information is preserved. Some chemical information might be preserved in this case, although often very little. Isotopic ratios of the shale, however, preserve information not only about the chemistry of the parent, but also about its age of formation. Similarly, melting of the sediment to form granite destroys all structural information, but often considerable chemical information is preserved. Isotope ratios, however, preserve, albeit incompletely, information about both chemistry and time.

As Gast said, the 87Sr/86Sr ratio is a function of the time-integrated Rb/Sr. Ultimately, we can draw much broader inferences than merely the time-integrated Rb/Sr ratio. Rb and Sr are both trace elements, and together account for only a few ppm of the mass of the Earth. However, Rb and Sr share some of their properties with other elements of their group: Rb with the alkalis, Sr with the alkaline
earths. So Rb/Sr fractionations tell us something about alkali/alkaline earth fractionations. In addition, since Rb is highly incompatible and Sr only moderately so, Rb/Sr fractionations tell us something about the fractionation of incompatible elements from compatible or less incompatible elements. Similarly Sm/Nd variations are related to variations between light and heavy rare earths, as well as incompatible–less incompatible element variations. We have some knowledge of the processes that fractionate the alkalis and alkaline earths and the light and heavy rare earths. Thus knowledge of variations in these element ratios allows us to limit the range of possible processes occurring within the Earth; the time parameter in equation 18.1 allows us the limit the range of possible times at which this fractionation occurred.

DEFINITIONS: TIME-INTEGRATED AND TIME AVERAGED

Gast stated that the $^{87}\text{Sr}/^{86}\text{Sr}$ is a function of the time-integrated Rb/Sr ratio. What did he mean by “time-integrated”?

Suppose the $^{87}\text{Rb}/^{86}\text{Sr}$ ratio evolves in some reservoir in some complex way. Let’s allow the $^{87}\text{Rb}/^{86}\text{Sr}$ to be an arbitrary function of time such as $^{87}\text{Rb}/^{86}\text{Sr} = t + \sin(5t/\pi) + 1$. This is shown plotted in Fig. 18.1a. If we integrate $^{87}\text{Rb}/^{86}\text{Sr}$ with respect to time, we get the area under the curve, of course. From that, we can find the average $^{87}\text{Rb}/^{86}\text{Sr}$ simply by dividing the area under the curve by $(t - t_0)$, which is 3.3. The $^{87}\text{Sr}/^{86}\text{Sr}$ would evolve as shown by the solid line in Fig. 18.1b. Just as we can calculate the average $^{87}\text{Rb}/^{86}\text{Sr}$ from the area under the curve in figure 18.1a, we can deduce the average $^{87}\text{Rb}/^{86}\text{Sr}$ in a reservoir if we know the initial and final values of t and $^{87}\text{Sr}/^{86}\text{Sr}$. It is in this sense that $^{87}\text{Sr}/^{86}\text{Sr}$ yields a time-integrated, or time-averaged value of $^{87}\text{Rb}/^{86}\text{Sr}$.

Notice that the same final $^{87}\text{Sr}/^{86}\text{Sr}$ value in Fig. 18.1b would have been reached if $^{87}\text{Rb}/^{86}\text{Sr}$ had a constant value of 3.3 ($^{87}\text{Sr}/^{86}\text{Sr}$ evolves along the dashed line). It could have been reached by an infinite other number of paths as well. Thus, while we can deduce

Figure 18.1. (a) $^{87}\text{Rb}/^{86}\text{Sr}$ is shown as changing in a hypothetical reservoir as some arbitrary function of time. The average $^{87}\text{Rb}/^{86}\text{Sr}$ may be calculated by integrating $^{87}\text{Rb}/^{86}\text{Sr}$ with respect to time, and then dividing by $(t - t_0)$. (b) Evolution of $^{87}\text{Sr}/^{86}\text{Sr}$ for the case where $^{87}\text{Rb}/^{86}\text{Sr}$ is a function of time as shown in Fig. 18.1a. The dashed line shows the growth of $^{87}\text{Sr}/^{86}\text{Sr}$ if $^{87}\text{Rb}/^{86}\text{Sr}$ is constant and equal to 3.3.
the average $^{87}\text{Rb}/^{86}\text{Sr}$ of a reservoir over its history from the $^{87}\text{Sr}/^{86}\text{Sr}$, we cannot decipher the details of the evolution (i.e., the exact path) of the $^{87}\text{Rb}/^{86}\text{Sr}$ ratio. An interesting feature of the U-Pb system is that we can constrain, though not specify exactly, the evolutionary path. This is because the two isotopes of U have very different half-lives.

We will begin our study of isotope geochemistry with an examination of mantle geochemistry. We will then turn to the geochemistry of the continental crust. The two problems are closely related, so ultimately, we will attempt to understand the relationship between chemical evolution of the crust and of the mantle.

ISOTOPE GEOCHEMISTRY OF THE EARTH’S MANTLE

The mantle constitutes two thirds of the mass of the Earth and very nearly the entire mass of the silicate Earth. The relative abundances of many elements, therefore, should be close to that of the Earth as a whole, most particularly for those elements that do not partition into either the core or the crust. We will begin with a working hypothesis that the crust, which constitutes only 0.5% of the mass of the Earth, has been created by partial melting of the mantle. This is one of only two possible alternatives: either the crust was formed at the same time as the Earth or it grew out of the mantle. There is no *a priori* reason why either of these two must be the case; we simply arbitrarily chose the second (in due course we will see that isotopic data substantiate our choice). Doing so allows us to define a reservoir that we shall call *primitive mantle* and is equivalent to the composition of the bulk Earth less the composition of the core. In mathematical notation, then:

$$m_{PM}[E]_{PM} = m_E[E]_E - m_C[E]_C$$

where m denotes mass, the subscripts PM, E, and C denote primitive mantle, bulk Earth, and core respectively, and $[E]$ is a 1×92 matrix containing the concentrations of the elements in the reservoir. Thus the relative abundances of lithophile elements (those elements for which $E_E = 0$) in the primitive mantle are the same as in the bulk Earth. The average modern mantle composition is then equal to the primitive mantle less the present composition of the crust:

$$m_M[E]_M = m_{PM}[E]_{PM} - m_K[E]_K$$

where the subscript K denotes continental crust and M the mantle. Our formulation implicitly assumes the core was formed before the crust. Again this is a somewhat arbitrary choice, but we have seen that deviation of terrestrial $^{182}\text{W}/^{184}\text{W}$ from chondritic suggests the core formed early. Similar mass balance equations may be written for isotope ratios (though not for ratios involving different elements – this introduces non-linearities and requires slightly more complex mass balance equations).

The mantle is not generally accessible for direct sampling, so geochemists must resort to indirect samples. Much of the information we have about the geochemistry of the Earth’s mantle comes from studies of mantle-derived magmas; other samples of the mantle include peridotite* massifs and xenoliths† in magmas. The utility of the peridotite massifs is limited by their rarity and metamorphic and metasomatic processes associated with emplacement in the crust; information from xenoliths is limited

* Peridotite is a rock which consists of greater than 50% olivine, $[\text{Mg,Fe}]_2\text{SiO}_4$; the term peridotite comes from the gem name of olivine, peridot). Various lines of evidence, including density, seismic velocities, and the assumption of an approximately chondritic Earth, indicate the mantle must consist of peridotite. Other essential minerals in the upper mantle are clinopyroxene ($[\text{Mg,Fe}]_2\text{CaSi}_2\text{O}_6$) and orthopyroxene ($[\text{Mg,Fe}]_2\text{Si}_2\text{O}_6$), and an aluminous phase, either plagioclase ($[\text{CaAl}_2\text{Si}_2\text{O}_8]$), spinel ($[\text{MgAl}_2\text{Si}_2\text{O}_8]$), or garnet ($[\text{Mg,Fe,Ca}]_3\text{Al}_2\text{Si}_3\text{O}_{12}$) depending on pressure. Most other elements will be dissolved in these 4 phases. In the lower mantle, this assemblage is replaced by one consisting primarily of Mg-perovskite ($[\text{Mg,Fe,Ca}]_3\text{Si}_2\text{O}_6$) and magnesiowüstite ($[\text{Mg,Fe}]_2\text{O}_3$).

† A xenolith is any foreign rock found in an igneous rock. Xenoliths of peridotite in igneous rocks are often pieces of mantle that have been carried to the surface by ascending magma.
both by their rarity and their small size; the information from basalts is limited because all structural information is lost and much of the chemical information is ‘distorted’ by the partial melting process. But all three types of samples have particular advantages as well. Together, they provide a picture of the composition and structure of the mantle complimentary to the information derived from geophysical observations such as seismic waves, free oscillations, etc.

We will begin by concentrating on the picture of the mantle provided by isotopic compositions of basalts derived from the suboceanic mantle. We initially avoid continental basalts for two reasons: 1.) many are contaminated by the continental crust through which they ascend and 2.) the subcontinental lithosphere, from which some of the continental basalts are derived, does not convect and hence many

Figure 18.2. Sr and Nd isotopic systematics of the crust and mantle. Oceanic island basalts and MORB sample major reservoirs in the mantle. Continental basalts represent mixtures of various components, including mantle plumes, subcontinental lithosphere, and continental crust.
not be as well mixed and as representative of the mantle as oceanic basalts derived from the convecting mantle.

The Sr-Nd-Hf Picture

Figure 18.2 shows the Sr and Nd isotopic characteristics of the Earth’s major silicate reservoirs, and Figure 18.3 shows the isotopic compositions of oceanic basalts‡ – mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The first observation is that MORB have the lowest $^{87}\text{Sr}/^{86}\text{Sr}$ and highest $^{143}\text{Nd}/^{144}\text{Nd}$ ratios. We immediately interpret this as an indication that the mantle source of MORB has

‡ By definition, basalt is an extrusive igneous rock (i.e., lava) with less than 52% SiO$_2$. Basalt is the primary product of melting of the mantle. Mid-ocean ridge basalts are simply those lavas erupted at mid-ocean ridge spreading centers, i.e., divergent plate boundaries.
low Rb/Sr and high Sm/Nd ratios relative to the source of OIB. Furthermore, these low ratios must have existed for a geologically significant time, hundreds of millions or billions of years, though without information on the parent/daughter ratios, we cannot be certain of how long.

Nd isotopes provide particularly useful information because we know the $^{143}\text{Nd}/^{144}\text{Nd}$ ratio of the whole earth or primitive mantle. We see that all of the MORB and most of the OIB have positive ε_{Nd}, i.e., they have $^{143}\text{Nd}/^{144}\text{Nd}$ greater than bulk earth. We associate positive ε_{Nd} ratios with light-rare-earth (LRE) depletion. MORB are themselves LRE depleted, so this comes as no surprise. From what we know of mineral-melt partition coefficients, it was clear before Nd isotopic data were available that the source of MORB was also LRE depleted. The Nd isotopic data confirmed this, but also made it clear that this light-rare-earth depletion must have existed for a considerable length of time (in order for the high $^{143}\text{Nd}/^{144}\text{Nd}$ to evolve). It was surprising that most OIB also had positive ε_{Nd} and hence time-integrated LRE depleted rare earth patterns because they are generally LRE enriched. While it is possible to create LRE enriched melts from LRE depleted sources, this requires rather small degrees of partial melting.

Although we tend to think of MORB and OIB as being isotopically distinct, there is in fact considerable overlap in the isotopic compositions of these groups. This is illustrated in Figure 18.4 for ε_{Nd}. Nevertheless, the means of the two are quite different, 8.7 and 5.0 respectively. MORB also clearly have a more uniform isotopic composition, and this is reflected by a standard deviation that is significantly smaller than that of OIB.

In the above discussion, we have transformed the isotopic information into information about parent-daughter ratios. The next step is to consider those processes that can fractionate, or change, the parent-daughter ratios. Rb is more incompatible than Sr, while Nd is more incompatible than Sm. This suggests the mantle has been affected by a process that removes the more incompatible elements. Partial melting and extraction of the melt is such a process. If, as we supposed above, the crust has formed by extraction of the mantle, then the depleted isotopic signature of the mantle might just reflect formation of the continental crust. The source of MORB appears to have been more depleted, perhaps having lost a greater melt fraction, than the source of OIB. There are, however, other explanations for

Figure 18.4. Comparison of Nd isotope ratio analyses of 1679 MORB and 2380 OIB from the PetDB and GEOROC databases. While distributions overlap, the two groups have different means and different spreads, with these differences being highly statistically significant.
the difference between MORB and OIB, which we will consider later.

In the past, the “depleted” isotopic signatures of oceanic basalts have been explained in just this way, i.e., production of the crust, either continental, oceanic, or both. Extraction of high Rb/Sr, low Sm/Nd crust would leave a mantle with low Rb/Sr and high Sm/Nd that evolved toward low $^{87}\text{Sr}/^{86}\text{Sr}$ and high ε_{Nd}. However, the new $^{142}\text{Nd}/^{144}\text{Nd}$ measurements force us to rethink this assumption. The $^{142}\text{Nd}/^{144}\text{Nd}$ of the accessible Earth, including MORB and OIB, is about 20 ppm higher than chondritic. This implies that the Sm/Nd ratio of the accessible Earth is 8 to 10% higher than chondritic. In other words, the difference in Nd isotopic composition between MORB and chondrites or bulk silicate Earth might be unrelated to crust formation and be entirely due to early differentiation of the young Earth, perhaps crystallization of a magma ocean. We do not have the same constraints on the Rb/Sr ratio of the Earth, but given the strong correlation between $^{87}\text{Sr}/^{86}\text{Sr}$ and ε_{Nd} it seems reasonable to assume that the Rb/Sr ratio was similarly (albeit in the opposite sense) by early differentiation.

Figure 18.4 shows $^{176}\text{Hf}/^{177}\text{Hf}$ ratios plotted against Nd isotope ratios. As we expect from what we know of the behavior of the parents relative to the daughters, ε_{Hf} is negatively correlated with $^{87}\text{Sr}/^{86}\text{Sr}$ and positively correlated with ε_{Nd}. The bulk Earth $^{177}\text{Hf}/^{176}\text{Hf}$ ratio is 0.28282, so we also see that MORB have positive ε_{Hf}, as do many OIB. Because Hf is more incompatible than Lu, the information provided by the Hf is entirely consistent with the information from the Sm-Nd and Rb-Sr systems.

REFERENCES AND SUGGESTIONS FOR FURTHER READING

Figure 18.4. Hf, Sr, and Nd isotope ratios of the suboceanic mantle as sampled by oceanic basalts. Note that the $\varepsilon_{\text{Nd}}$$\varepsilon_{\text{Hf}}$ array passes near the 0-0 bulk Earth point, although not exactly through it.